diff --git a/test.py b/test.py deleted file mode 100644 index 0b87ca0bfe99402dbef1d31ad8d2cc799d2d0ce3..0000000000000000000000000000000000000000 --- a/test.py +++ /dev/null @@ -1,50 +0,0 @@ -import matplotlib.pyplot as plt -import numpy as np - -np.random.seed(19680801) - - -def gradient_image(ax, direction=1, cmap_range=(0, 1), **kwargs): - """ - Draw a gradient image based on a colormap. - - Parameters - ---------- - ax : Axes - The Axes to draw on. - direction : float - The direction of the gradient. This is a number in - range 0 (=vertical) to 1 (=horizontal). - cmap_range : float, float - The fraction (cmin, cmax) of the colormap that should be - used for the gradient, where the complete colormap is (0, 1). - **kwargs - Other parameters are passed on to `.Axes.imshow()`. - In particular, *cmap*, *extent*, and *transform* may be useful. - """ - phi = direction * np.pi / 2 - v = np.array([np.cos(phi), np.sin(phi)]) - X = np.array([[v @ [1, 0], v @ [1, 1]], - [v @ [0, 0], v @ [0, 1]]]) - a, b = cmap_range - X = a + (b - a) / X.max() * X - im = ax.imshow(X, interpolation='bicubic', clim=(0, 1), - aspect='auto', **kwargs) - return im - - -def gradient_bar(ax, x, y, width=0.5, bottom=0): - for left, top in zip(x, y): - right = left + width - gradient_image(ax, extent=(left, right, bottom, top), - cmap=plt.cm.Blues_r, cmap_range=(0, 0.8)) - - -fig, ax = plt.subplots() -ax.set(xlim=(0, 10), ylim=(0, 1)) - -N = 10 -x = np.arange(N) + 0.15 -y = np.random.rand(N) -gradient_bar(ax, x, y, width=0.7) -plt.show() \ No newline at end of file